10-3 Worksheet \#2
 Geometric Sequences and Series

Find the value of $\boldsymbol{a}_{\boldsymbol{n}}$ for each geometric sequence.

1. $a_{1}=5, r=3, n=6$
2. $a_{1}=20, r=-3, n=6$
3. $a_{1}=-4, r=-2, n=10$
4. a_{8} for $-\frac{1}{250},-\frac{1}{50},-\frac{1}{10}, \ldots$
5. a_{12} for $96,48,24, \ldots$
6. $a_{1}=8, r=\frac{1}{2}, n=9$
7. $a_{1}=-3125, r=-\frac{1}{5}, n=9$
8. $a_{1}=3, r=\frac{1}{10}, n=8$

Write an equation for the \boldsymbol{n} th term of each geometric sequence.
9. $1,4,16, \ldots$
10. $-1,-5,-25, \ldots$
11. $1, \frac{1}{2}, \frac{1}{4}, \ldots$
12. $-3,-6,-12, \ldots$

Find the sum of each geometric series.

13. $\sum_{k=3}^{10}(-4)(-2)^{k-1}$
14. $\sum_{k=1}^{8}(-3)(3)^{k-1}$
15. $\sum_{k=2}^{32} 9(-1)^{k-1}$

Find the sum of each geometric series.

16. $a_{1}=240, r=\frac{3}{4}, n=7$
17. $a_{1}=360, r=\frac{4}{3}, n=8$
18. Natalie is handing out fliers to advertise the next student council meeting. She hands out fliers to 4 people. Then each of those 4 people hand out 4 fliers to 4 other people. Those 4 then hand out 4 fliers to 4 new people. If Natalie is considered the first round, how many people will have been given fliers after 4 rounds.
